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Abstract— A new method is proposed to estimate the probability
distribution of specific communication network measures. Real
wotld communication networks are dynamic and vary based on
an underlying social network, thus reliably estimating network
measures is challenging. Two individuals that are socially
connected may communicate several times one day, and not at all
on another, yet their basic relationship remains unchanged. In
this situation, estimates of network measures, such as density,
degree centrality and others may be severely affected by the
occurrence or absence of obsetrved communication ties between
individuals.

The communication network of a group of mid-cateer Army
officers is modeled from empirical data using the network
probability matrix (NPM) proposed by McCulloh and Lospinoso
(2007). The NPM provides a framework to model a
communication network by estimating the edge probabilities
between two individuals in a network. This framework can model
a specific social group regardless of their network topology:
random, small-world, scale-free, cellular, etc. @ Monte Carlo
simulation is used with the NPM to generate 100,000 instances of
the communication network. A statistical distribution is fit to the
density measure. Using this probability distribution, statistically
significant changes in density can be detected.

Index Terms—NPM, Network Probability Matrix, Social
Network, Density, Distribution

1. INTRODUCTION

V arious techniques are used in the network science
community for the simulation of networks. These
frameworks typically are based on the topology and
structure of the network ie. triads, dyads and cliques.
However theses techniques do not always take into
account all of the factors that contribute to the dyadic
relationship between agents. In a network an agent may
not care that there is a triad between 3 other agents or that
certain agents in the network have dyadic ties. The agent is
primarily concerned with his or her
relationships leading to an underlying dynamic equilibrium
in the network.

own dyadic

This dynamic equilibrium involves an underlying edge
probability structure that contains a probability that each

agent will communicate with every other agent in the
network.

This probability structure remains constant in the
network independent of observations at a single instance in
time. In a single observation the appearance of a tie does
not indicate that a relationship exists as the communication
may have been made in error. Conversely the lack of
communication between two agents in a single observation
does not indicate the lack of a relationship as an agent is
not consistently communicating with every agent he has a
relationship with at all times. While the appearance or lack
of communication does not indicate that the relationship
between two agents exists, the communication at a single
observation relies on the underlying probability that the
agents will communicate.

The network probability matrix (NPM) proposed by
McCulloh and Lospinoso (2007) posits that networks can
be simulated based on the underlying probability structure
of the dynamic equilibrium. This framework estimates the
edge probabilities between each combination of two
individuals in a network. Probability estimation can range
from a proportion of communications in a series of
observations or be estimated from more complex
distributions depending on the amount and type of data
present. This structure can then be used to simulate a
variety of network topologies: random, small-world, scale
free, cellular, ect.

The edge probability structure of the underlying
dynamic equilibrium remains constant in the network while
the network is at a stable state. However, it may shift as
shocks to the network take place. Using Monte Carlo
simulation, the wunderlying distributions of network
measures can be determined while the network is in its
dynamic equilibrium. These underlying distributions can
be used in change detection and allow us to statically
predict shocks to the network and may be an indicator to
determine when significant changes occur.
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II. BACKGROUND

Social network analysis is a theoretical framework that
examines the relationships between social entities (e.g.
people, groups, organizations, beliefs, knowledge, etc.).
These objects are known as nodes and their connections
are referred to as edges. Not all nodes are connected while
some nodes are connected with multiple relationships.
This network framework is applicable in a plethora of
content areas such as communications, information flow,
and group or organizational affiliation (Titchy & Tushman,
1979).
theory to make predictions about network structure.

Social network analysis relies heavily on graph

A.  Erdis-Rénia Random graphs

In 1959 mathematicians Paul Erdés and Alfréd Rénia
made revolutionary discoveries in the evolution of random
graphs. In their eight papers Erdés and Rénia evaluate the
properties of random graphs with # vertices and  edges.
For a random graph G containing no edges, at each time

n
step a randomly chosen edge among the (Zj possible

edges is added to G. This graph contains N edges and
n

each edge of the | (2] |= Cn’N possible edges is equally
N

n
likely. Therefore, once an edge is chosen from the (2]
equally likely edges the next edge is chosen among the

n
remaining (2) -1 edges and this process is continued so

n
that if & edges are fixed, all remaining [2) -k edges

have equal probabilities of being chosen (Erdés & Alfréd
Rénia, 1960). A general model used to generate random
graphs is as follows: “For a given p, 0 < p < 1, each
potential edge of G is chosen with probability p,
independent of other edges. Such a random graph is
denoted by G, where each edge is determined by flipping
a coin, which has probability p of coming up heads (Chung
& Graham, 1998).” In this model of random graphs each
edge has an equal probability of occurring or not occurring
within the graph. This random graph model also assumes
that all nodes in the graph are present at the beginning and
the number of nodes in the network is fixed and remains
the same throughout the network’s life. Additionally, all
nodes in this model are considered equal and are

undistinguishable from each other (Barabasi & Albert,
1999).

B.  Statistical tests

Utilizing Erdos’ theory of random graphs as well as the
class of uniform distributions associated with these graphs,
Holland and Leinheart (1971) developed a variety of
statistical tests for the analysis of social networks. Using a
uniform distribution these tests spread the total probability
mass equally over all possible outcomes, therefore giving
an equal probability to the existence of an edge between
any two nodes in the network. These statistical tests were
used to develop a reference frame or constant benchmark
to which observed data could be compared in order to
determine how “structured a particular network was, or
how far the network deviated from the benchmark (Furst
& Wasserman, 1994).”

C.  Strength of weak ties

In 1969, Mark Granovetter proposed the strength of
weak ties. In Granovettet’s social world our close friends
are often friends with each other as well, leading to a
society of small, fully connected circle of friends who ate
all connected by strong ties. These small circles of friends
are connected through weak ties of acquaintances. In turn,
these acquaintances have strong connections within their
own circle of friends. The weak ties connecting circles of
friends play an imperative role in numerous social activities
from finding a job to spreading the latest fad. Close
friends who have strong connections are often exposed to
the same information, therefore, weak ties are activated to
bridge out of our circle of friends and into the outside
wortld (Granovetter, 1973).

D.  Swall World Networks

Building off of Granovetter’s model Duncan Watts and
Steven Strogatz (1998) developed the clustering coefficient,
dividing the number of links of a node’s first order
connections by the number of links possible between these
first This clustering coefficient
illustrates the interconnectivity of a circle of friends, where
a value close to 1 demonstrates all first order connections
of a node are connected with each other. Conversely, a
value close to 0 shows that a node’s first order connections
are only connected through that particular node.

order connections.

E. Scale Free Networks

The clustering coefficient of the Watts-Strogatz small
world network model is the first to reconcile clustering
with the characteristics of random graphs. According to



Baller, D., Lospinoso, J. Specific Communication Network Measure Distribution Estimation 3

the Watts-Strogatz model each node is directly connected
to each one of its neighbors resulting in a high clustering
coefficient. By clustering alone, this model has a high
average path length connecting two random nodes.
However, by adding only a few random links between
nodes of different clusters the average separation between
nodes drastically decreases. This model while containing
links keeps the clustering
coefficient relatively unchanged (Watts & Newman, 1999).
While the Watts-Strogatz model originally did not add
extra links to the graph but randomly rewired some of the

random between nodes

links to distant nodes, the addition of random links was
proposed by Watts and M. Newman.

According to Albert-Laszl6 Barabasi the random graph
theory of Erdés and Rénia was rarely found in the real
wortld. Barabasi has found that many real world networks
have some nodes that are connected to many nodes and
others that are connected to few nodes. His empirical tests
showed that the distribution of the number of connections
in many networks all followed a power-law distribution.
These networks lack the characteristic scale in node
connectivity present in random graphs, and therefore, are
scale-free (Barabasi, 2003). As a result of the number of
connections following a power distribution, hubs ate
created among nodes in the network. A hub is a highly
connected node that contains most of the links in the
network and creates short paths between any two nodes in
the network.

Barabisi’s model of scale-free networks is constructed
around two ideas—growth and preferential attachment.
For each time step a new node is added to the network.
This illustrates the principal that networks are assembled
one node at a time (Barabasi & Albert, 1999). Assuming
that each new node connects to the existing nodes of the
network with two links, the probability that the new node
will choose a given node is proportional to the number of
links the chosen node has. Therefore, a node with more
links has a higher probability of being connected to. This
creates a “rich get richer” scenario where nodes with many
links continue to grow by collecting new links while newer
nodes with lower degrees do not collect as many links

(Barabasi & Albert, 1999).

Based on a scale-free network model where nodes make
connections based completely on preferential attachment
the probability that a new node will connect to a node with

(Barabasi, 2003). This causes

k
£ links is given by Z—k
N
the first nodes in the network to develop into hub nodes
due to having the longest time to collect links. However it

is not always the case that the first nodes in a network
develop into the biggest hubs.

F.  Fitness Model

In order to account for newer nodes overtaking older
nodes as hubs, Barabisi constructed the fitness model.
Fitness is a nodes ability to collect links relative to every
other node in the network and is based on competition in
complex systems (Barabasi, & Bianconi, 2001). In this new
model a node’s attractiveness is not determined completely
by its number of links, but preferential attachment is
driven by the product of the number of links a node has
and its fitness. In this model the probability a new node
will connect to a node with £ links a fitness of 7 is

k—ﬂ(Barabési, & Bianconi, 2001). Nodes in this
Zi ki,

model acquire links following the power law distribution of
the scale-free model, however, the dynamic exponent, g,
which determines how fast a node acquires new links, is
different for each node. This is proportional to a node’s
fitness, therefore, a node that is twice as fit as another
node will obtain nodes twice as fast because its dynamic
exponent is twice as large. This “fit-get-rich” model allows
nodes to become hubs
regardless of when they enter the network (Barabasi, &
Bianconi, 2001).

based on their attractiveness

G. Winner Take All Model

Contrary to the scale-free network model Barabasi
developed the “winner take all model,” which strongly
portrays The “winner-take-all-model”
consists of a single hub and many tiny nodes. This
network develops a star topology and nodes do not acquire
links following a power law distribution.

monopolies.

H. Network Probability Model

Ian McCulloh and Joshua Lospinoso (2007) proposed a
new structure for random communication networks over
time, based on empirical data collected on real world
networks. This framework, estimates distributions for the
time between communication messages, then based on a
given time interval the probability of an edge occurring in
the network is calculated for every ordered pair of nodes.
These probabilities can be constructed through multiple
techniques. To derive the probabilities from empirical data
collected over several time periods, a proportion of edge

occurrences, eij ,

each cell in the adjacency matrix @;. These probabilities are
displayed in a network probability matrix where each cell is

can be used to estimate probabilities for
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the probability that node 7 communicates with node j. This
framework is capable of generating networks that are
similar to scale free networks. Thus, this model can be
used to construct any network topology: Erd8s-Rénia
random, Watts-Strogatz small world, Albert-Barabasi scale-
free, star, cellular, ect. The NPM model is estimated from
empirical data and can be used to simulate realistic
observations of relationships in specific organizations.

III. DATA

This research evaluates the density of a real world
network in order to find the underlying distribution of
network density. The data was collected from a war
fighting simulation in FT' Leavenworth, KS in April 2007
by Craig Schreiber and Lieutenant Colonel John Graham.
There were 99 participants in the experiment that were
monitored over the course of four days. This 99 agent
data set was then cut down to 68 agents. These 68
participants served as staff members in the headquarters of
the brigade conducting the exercise. The data displays the
interactions of agents in a network collected by a self
reported communications survey.

IV. METHOD

Our study explores the distribution of the density
measure in simulated networks using the network
probability matrix.

Below is an outline of the approach pursued in this
study:

A. Construction of the Network Probability Matrix

In order to simulate the network it is necessary for a
network probability matrix, (NPM) to be created. Once
the datasets were trimmed of the scripted agents, they were
symmetrized across the main diagonal in the
Organizational Risk Analyzer (ORA) to account for the
lack of directionality of communication in the data.
Symmetrizing the data also corrects for the informant error
of agents reporting other agents they
communicated with. Next, the datasets were dichotomized
to remove the weighting set by the participants. Once the
data is dichotomized a one represents communication

not have

between two agents and a zero represents the lack of
communication between two agents. To construct the
NPM all eight data sets were compiled into a single data set
consisting of the total number of discrete time periods that
each agent communicated with each other agent. This
matrix was then divided by the number of discrete time
periods to determine the underlying edge probabilities for

the network in dynamic equilibrium.

B.  Simulation Generation

The NPM was then used as the edge probabilities for a
Monte Catlo simulation of the network. In this simulation
If the
random number is less than the edge probability then the
edge is added to the graph. This algorithm was used to
create 100,000 simulations of the network.  Once 100,000
simulations of the network were completed the average
density was taken from each simulation to create a dataset
of 100,000 network densities.

a random number was generated for each edge.

C. Reliability and Consistency

To analyze the reliability and consistency of our
simulations hamming distances were utilized. Using the
NPM, 60,000 instances of the network were simulated.
The average hamming distance from each empirical data
set to every other empirical data set and from each
simulated network to each empirical data set. These
average hamming distances were then analyzed using a #
test.

D.  Distribution fitting

The normal distribution was fit to the data using
Maximum Likelihood Estimation. An Anderson-Darling
goodness of fit test and a comparison of the estimated
cumulative distribution function to the data’s empirical
distribution function indicated a very good fit for the data.
In addition, since the density is a linear function of the
average node degree, the central limit theorem would
suggest that the density is normally distributed, given
certain assumptions.

V. RESULTS

Using the ~test it is shown that the simulated networks
have a smaller average hamming distance to the empirical
data sets than each empirical data set is to each other. This
illustrates that the simulated networks give a more reliable
and approximation of the underlying
distribution. The results of the #test are shown below in
Table 1. Where column one is the average hamming
distance from each empirical data set to every other
empirical data set and column three is the average
hamming distance from 60,000 networks simulated with
the NPM to each of the empirical data sets. The p-value of
each test is approximately zero indicating that there is a
statistically significant difference between the empirical
hamming distances and the simulated hamming distances.
Additionally, since

consistent
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Hemperical — Hsimulated >0

it is shown that the simulated networks are closer to each
of the empirical data sets than the empirical data sets are to
each other.

Table 1. ~test of Average Hamming Distances

M 8 N 60000
Mean Standard Standard
Hamming | Deviation of| Mean |Deviation of|
Distance | Hamming | Hamming | Hamming
to Distance to |Distance to| Distance to
[Datal Empirical | Empirical | Simulated | Simulated p-
Set | Networks | Networks | Networks | Networks t-test value
1 409.286 38.560 358.094 12.775 3.755 0.00
2 365.857 18.298 320.097 12.739 7.073 0.00
3 365.857 29.043 320.164 12.793 4.450 0.00
4 377.857 38.247 330.674 12.773 3.489 0.00
5 375.286 36.100 328.377 12.796 3.675 0.00
6 349.857 38.159 306.078 12.785 3.245 0.00
2.7311
7| 373.8571 48.45076 327.0728 12.82622 35 0.01
2.3018
8] 362.428¢ 55.63529 317.1509 12.77754 49 0.02

Once the reliability and consistency of the simulations
created using the NPM was established, the distribution of
the density could be analyzed. Since density is a linear
function of a sample average of a network statistic
according to the formula

avg degree

(-1
and the sample size, 7, is greater than 30 the central limit
theorem can be used to show that the underlying
distribution of network density is the normal distribution,
with 4u=0.0984374 and 6=0.00396148.
This is also shown in Figure 1.

density =

Figure 1. Stepwise Plot of Density Data
and CDF of the Normal Distribution

02+

0.090 0.095

L S T I S S S Y S S R
0.100 0.105 0.110 0.115 0.120

This graph shows the stepwise plot of the 100,000
densities overlaid with the CDF of the normal distribution.
The sum of squared error of this model is 9.60609. This
small sum of squared error reinforces the model shown
above in Figure 1.

VI. CONCLUSION

This research wvalidates the use of the NPM for
simulating networks based on empirical data.  The
reliability and consistency of the network simulations
provide a strong framework for analysis.

This research can be extended in at least three aspects:
assessing the underlying distribution for other network
level statistical measures, assessing the underlying
distribution for agent level statistical measures, and using
these distributions to statistically predict changes and
shocks to a network.
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Background & Motivation

Simulating random instances of networks is a hot topic in today’s
Network Science research

— Erdos-Renyi, Watts-Strogatz, Barabasi-Alberts, NPM

How do networks arrive at structure? How do we explore these
structures?

Many methods of simulating random networks exist
No sound methodology exists for measuring “goodness”

We propose a methodology for testing how well simulations
perform under a rigorous statistical framework, and execute
testing for two data sets under the Network Probability Matrix and
Erdos-Renyi.




Data Set 1 (NetO7)

Warfighting Simulation run at FT Leavenworth, KS in
April 2007.

68 Mid Career Army Officers

4 day simulated exercise

Self Reported Communications survey
Surveys conducted 2 x per day

8 Total Data Sets



Data Set 2 (Net05)

Warfighting Simulation run at FT Leavenworth, KS in
2005.

156 Mid Career Army Officers

5 day simulated exercise

Self Reported Communications survey
Surveys conducted 2 x per day

O Total data sets



Data

e Data symmetrized and dichotomized
e Square symmetric matrix

e Over time data compiled by agent



ORA Visualization (NetO7)
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Assumptions

Network in Dynamic Equilibrium

Observations based on
Underlying edge probability
structure

Maintain ergodicity
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Network Probability Matrix
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| 11| 1] 0| ] 1 0 0 0166667 0 0 0666667 0| 1 1] 1 0666667 0833333
| 12| 0.833333) 0.166667 0.5 1 0.166667 0l 0.5 0.166667 0.5 0.666667 1 0 1 0.5/ 0| 0.666667
| 13 | 0 0 0.5 0.66BE67 0 0/ 0333333 0 0.5 0333333 1 1 0 1/ 0.166667 0.166667
14 | 1 0 05 0 0 0 0 0 0 0.666667 1 0.5 1 0 0 0| 0.33333
| 15 | 0 0 0/ 0.333333 0.166667 0 0| 0.166667 0 0| 0.666667 0 0.166667 0 0 1 0.83333
| 16 | 0.166667 0] 0.333333| 0.666667 0.166667 0 0] 0.333333| 0.333333| 0.166667| 0.833333| 0.666667 0.166667 0 1] 0
| 17| 0 0/ 0.333333 0166867 0 0 0 0 0333333 0 0 0 0 0333333 0833333 1
| 18 | 0 0 0 0333333 1] 0 0166667 0666667 (0 666667 0 0166667 0 166667 0 0 0| 0
| 19| 0.166667  0.166667 0166667 05 0 0/ 0.166667| 0 0 0.666667 0.833333 0.666667 0 0833333 0 0
| 20 | 0 0 0 0 0666667 0166667 0.GGEEET 0 0 0166667 05 0 0 0.5 0666667 0.166667 0.
| 21 | 0 0/ 0.166667 0 0.166667 0] 0.833333 0 0 0 0 0 0 0| 0.166667 0
| 22 | 0.833333 0.5/ 0.166667 | 0.333333 0.333333 0.333333 0.166667 0| 0.333333| 0.333333 0.666667 0.5 0| 0.666667 0 0| 0.16666
| 23 | 0 0 0/ 0.166667 0 0/ 0333333 0 0 05 05 0 0 0333333 0 0
| 24 | 0166667 0 0/ 0.166667 0 0| 0.166667 0.666667 0 0 1) 0.166667| 0.166667) 0 05 0/ 0.16666
| 25| 0333333 0 0 0.166667 0 0 0 0 0 0.166667 0.833333 0.666667 0.333333 0.16G667 0 05
| 26 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| 27 | 0 0| ] 0 0 0| ] 0 0 0| ] 0 0 0| ] 0
| 28 | 0 0.166667 0.166667 0.333333 0.166667 0/ 0333333 0 0 0l 0/ 0.666667 0.333333 0.5/ 0 0
29 0 0 0 0/ 0.166667 0 0 0 0 | 0.16BBET 0 0

0

0.166667
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The Statistical Test

We use Hamming Distance (HD) as a measure of
similarity between networks.

We find HD for all combinations of time periods in the
empirical data.

We take all of the simulated graphs, and find HD
between them and each time period from empiricals.

Perform T-TEST between these two sets of HDs.

This test tells us if the simulation (NPM/E-R) does a
BETTER JOB at explaining a given time period than the
rest of the empirical data does.

14



The Statistical Test

1. Create a vector of hamming distances between all
possible combinations of empirical vectors. Group
them by time period.

2. Create a vector of hamming distances between all
simulated graphs and each time period, grouping the
vectors by time period.

3. Perform a T-test between each corresponding vector to
answer the following question:

Does the NPM/E-R, on average, more closely match
any particular time period from the empirical data than
the rest of the empirical data?

15



Results (NETO7): NPM

sComparison of simulated vs. empirical data

M 8 N 60000
Standard Standard

Mean Deviation of Mean Deviation of

Hamming Hamming Hamming Hamming

Distance to Distance to Distance to Distance to

Empirical Empirical Simulated Simulated

Data Set Networks Networks Networks Networks t-test p-value

1 409.286 38.560 358.094 12.775 3.755 0.00
2 365.857 18.298 320.097 12.739 7.073 0.00
3 365.857 29.043 320.164 12.793 4.450 0.00
4 377.857 38.247 330.674 12.773 3.489 0.00
5 375.286 36.100 328.377 12.796 3.675 0.00
6 349.857 38.159 306.078 12.785 3.245 0.00
7 373.8571 48.45076 327.0728 12.82622 2.731135 0.01
8 362.4286 55.63529 317.1509 12.77754 2.301849 0.02
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Results (NETO7): E-R

sComparison of simulated vs. empirical data

M 8 N 60000
Standard Standard

Mean Deviation of Mean Deviation of

Hamming Hamming Hamming Hamming

Distance to Distance to Distance to Distance to

Empirical Empirical Simulated Simulated

Data Set Networks Networks Networks Networks t-test p-value

1 409.286 38.560 1127.379 17.41762 -3.9167 0.00
2 365.857 18.298 1116.303 21.54558 -4.23399 0.00
3 365.857 29.043 1193.895 18.60198 -3.73844 0.00
4 571.857 38.247 1252.086 16.82216 -4.40049 0.00
5 375.286 36.100 1169.254 18.88182 -3.64695 0.00
6 349.857 38.159 1209.797 17.59757 -3.60082 0.00
7 373.8571 48.45076 1110.78 17.31786 -3.44968 0.00
8 362.4286 55.63529 1192.288 17.44347 3.461 0.00
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Results (NETO5): NPM

M 9 N 60000
M Standard Standard
can . Deviation of Mean Deviation of
Hamming . . .
. Hamming Hamming Hamming
Distance to . . .
Embirical Distance to Distance to Distance to
N tp o Empirical Simulated Simulated
Data Set chworks Networks Networks Networks t-test p-value
1 1445 84.774 1284.338 23.747 3.467 0.001
2 1394.75 67.487 1239.647 23.703 3.765 0.000
3 1296.125 85.436 1151.946 23.671 3.287 0.001
4 1315.875 153.533 1169.665 23.718 2.421 0.015
5 1191.25 112.324 1058.99 23.667 2.732 0.006
6 1204.875 207.944 1071.116 23.623 1.912 0.056
7 1167.375 190.431 1037.713 23.695 1.98 0.048
8 1159.625 204.465 1030.815 23.732 1.888 0.059
9 1170.125 195.266 1040.142 23.618 1.953 0.051
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Results (NETO5): E-R

M 9 N 60000
Mean Standard Standard
ca ] Deviation of Mean Deviation of
Hamming . . .
. Hamming Hamming Hamming
Distance to . . .
Embirical Distance to Distance to Distance to
N tp o Empirical Simulated Simulated
Data Set CEWOrS Networks Networks Networks t-test p-value
1 1445.000 84.774 2253.82 34.26138 -6.8034 0.00
2 1394.750 67.487 2232.07 41.48661 -7.46798 0.00
3 1296.125 85.436 2385.99 35.58944 -6.47687 0.00
4 1315.875 153.533 2503.9 32.87007 -7.80098 0.00
5 1191.250 112.324 2336.64 36.9779 -6.2939 0.00
6 1204.875 207.944 2419.19 34.87729 -6.20163 0.00
7 1167.375 190.431 2219.81 33.75171 -5.89936 0.00
8 1159.625 204465 238333 33.89981 -5.99199 0.00
? 1170125 195.266 2453.82 36.2168 71034 0.00
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Significance

NPM performs well, E-R does not.
— Why? (Net-07 Clustering)

Since the NPM does a good job of representing the laws
which govern the network, we can use simulation to:

— Explore large numbers of “instances” of the graphs

— Create distributions of network and agent-level measures

With a validated simulation, we facilitate further
statistical analysis of the network and its measures!
— Statistical Process Control: When has the network undergone a
significant change?
— Percolation: What is the likelihood that a rumor/ideology/belief
spreads throughout the network?

20



Results (NETO7)

Fit a normal distribution to densities

Frequency
25000

15000

2000

o

Histograrm of Density

00583232 0087856 009243 0097104 01017258 01068332 0110976

Density

21
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Results (NETO5)

Fit a normal distribution to densities

20000

0.8

15000

0.6

Freguency
10000

04

a0oo

0.2

Histogram of Density

b

0

0.048672 0.0511056
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Conclusion

When highly complex systems are being simulated, and
empirical data is available, we can use this methodology to
test whether our simulation is at /east as close to each time
series in a data set as the rest of the time periods are.

— Which model (Erdos, Watts, Barabasi, NPM) most accurately
describes the empirical data?

The “simple case” of the NPM is shown to be a viable
explanation of social networks.
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